基于流形正則化框架和MMD的域自適應BLS模型
doi: 10.16383/j.aas.c210009
-
1.
中國民航大學(xué)電子信息與自動(dòng)化學(xué)院 天津 300300
-
2.
首都師范大學(xué)心理學(xué)院 北京 100048
-
3.
大連海事大學(xué)船舶電氣工程學(xué)院 大連 116023
Domain Adaptive BLS Model Based on Manifold Regularization Framework and MMD
-
1.
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300
-
2.
School of Psychology, Capital Normal University, Beijing 100048
-
3.
School of Marine Electrical Engineering, Dalian Maritime University, Dalian 116023
-
摘要: 寬度學(xué)習系統(Broad learning system, BLS)作為一種基于隨機向量函數型網(wǎng)絡(luò )(Random vector functionallink network, RVFLN)的高效增量學(xué)習系統, 具有快速自適應模型結構選擇能力和高精度的特點(diǎn). 但針對目標分類(lèi)任務(wù)中有標簽數據匱乏問(wèn)題, 傳統的BLS難以借助相關(guān)領(lǐng)域知識來(lái)提升目標域的分類(lèi)效果, 為此提出一種基于流形正則化框架和最大均值差異(Maximum mean discrepancy, MMD)的域適應BLS (Domain adaptive BLS, DABLS)模型, 實(shí)現目標域無(wú)標簽條件下的跨域圖像分類(lèi). DABLS模型首先構造BLS的特征節點(diǎn)和增強節點(diǎn), 從源域和目標域數據中有效提取特征; 再利用流形正則化框架構造拉普拉斯矩陣, 以探索目標域數據中的流形特性, 挖掘目標域數據的潛在信息. 然后基于遷移學(xué)習方法構建源域數據與目標域數據之間的MMD懲罰項, 以匹配源域和目標域之間的投影均值; 將特征節點(diǎn)、增強節點(diǎn)、MMD懲罰項和拉普拉斯矩陣相結合, 構造目標函數, 并采用嶺回歸分析法對其求解, 獲得輸出系數, 從而提高模型的跨域分類(lèi)性能. 最后在不同圖像數據集上進(jìn)行大量的驗證與對比實(shí)驗, 結果表明DABLS在不同圖像數據集上均能獲得較好的跨域分類(lèi)性能, 具有較強的泛化能力和較好的穩定性.
-
關(guān)鍵詞:
- 寬度學(xué)習系統 /
- 流形正則化框架 /
- 最大均值差異 /
- 域自適應 /
- 圖像分類(lèi)
Abstract: As an efficient incremental learning system based on random vector function-link network (RVFLN), broad learning system (BLS) has the characteristics of fast adaptive model structure selection and high precision. However, due to the lack of label data in target classification, the traditional BLS is difficult to improve the classification effect of target domain by using relevant domain knowledge. Therefore, a domain adaptive BLS (DABLS) model based on manifold regularization framework and maximum mean discrepancy (MMD) is developed to achieve cross-domain image classification of target domain under unlabeled condition. Firstly, the feature nodes and enhancement nodes of BLS are constructed to effectively extract features from the data of source domain and target domain. The manifold regularization framework is used to construct Laplacian matrix in order to explore the manifold characteristics of the target domain data and mine the potential information of the target domain data. Then the transfer learning method is used to construct the MMD penalty term between the source domain data and the target domain data to match the projection mean between the source domain and the target domain. The feature nodes, enhancement nodes, MMD penalty term and Laplacian matrix are combined to construct the objective function. Ridge regression analysis is used to solve the objective function to obtain the output coefficients, so as to improve the cross-domain classification performance. Finally, a large number of validation and comparative experiments are carried out on different image data sets, and the experiment results show that the DABLS can better achieve cross-domain classification on different image data sets, and has strong generalization ability and better stability. -
圖 3 5種圖像數據集樣本 (第1行顯示Office和Caltech256數據集,第2行顯示MNIST, USPS和COIL20數據集(從左到右))
Fig. 3 Samples from five image datasets (The first row shows Office and Caltech256 datasets, and the second row shows MNIST, USPS and COIL20 datasets (from left to right))
表 1 數據集的詳細描述
Table 1 Detailed description of datasets
數據集 樣本數目 特征維數 類(lèi)別 子集 USPS 1800 256 10 U MNIST 2000 256 10 M COIL20 1440 1024 20 CO1, CO2 Office 1410 800 10 A, W, D Caltech256 1123 800 10 C ImageNet 7341 4096 5 I VOC2007 3376 4096 5 V 下載: 導出CSV表 2 不同節點(diǎn)數下DABLS的實(shí)驗結果
Table 2 Experimental results of DABLS with different numbers of nodes
特征
節點(diǎn)增強
節點(diǎn)M→U U→M 精度 (%) 時(shí)間 (s) 標準差 精度 (%) 時(shí)間 (s) 標準差 100 500 60.41 19.01 1.25 45.25 20.50 1.84 100 1000 63.94 19.59 1.61 47.57 22.46 2.14 100 1500 66.98 21.56 1.49 48.05 26.16 2.27 100 2000 68.54 23.98 1.67 50.13 27.27 1.53 100 2500 68.77 27.15 1.72 50.25 29.27 1.64 100 3000 69.22 33.12 1.81 50.37 32.83 1.78 100 3500 69.31 37.26 1.89 49.91 36.25 1.92 100 4000 68.95 40.96 1.75 49.63 41.17 1.82 150 2000 68.36 25.03 1.87 49.49 27.92 1.72 200 2000 67.53 25.91 2.01 50.08 28.72 1.79 300 2000 66.57 26.41 2.03 49.92 29.62 1.87 400 2000 64.35 26.97 3.37 48.59 30.58 1.95 500 2000 62.96 27.49 4.61 49.38 31.41 1.64 下載: 導出CSV表 3 從源域到目標域的平均分類(lèi)精度(%)
Table 3 Average classification accuracy from source domain to target domain (%)
任務(wù) BLS SS-BLS TCA CDELM CD-CDBN DABLS M→U 25.34 59.67 54.28 53.27 50.27 68.54 U→M 20.25 29.84 52.00 39.80 41.65 50.13 平均值 22.79 44.75 53.14 46.53 45.96 59.33 下載: 導出CSV表 4 從源域到目標域的平均訓練時(shí)間(s)
Table 4 Average training time from source domain to target domain (s)
任務(wù)/方法 BLS SS-BLS TCA CDELM CD-CDBN DABLS M→U 0.69 12.75 27.14 24.77 548.47 23.98 U→M 0.58 13.18 22.36 23.63 536.95 22.27 平均值 0.64 12.97 24.75 24.20 542.71 23.13 下載: 導出CSV表 5 不同節點(diǎn)數下DABLS的實(shí)驗結果
Table 5 Experimental results of DABLS with different numbers of nodes
特征
節點(diǎn)增強
節點(diǎn)CO1→CO2 CO2→CO1 精度 (%) 時(shí)間 (s) 標準差 精度 (%) 時(shí)間 (s) 標準差 100 500 85.43 2.59 1.82 82.70 2.83 1.61 100 1000 86.40 3.17 1.80 83.29 3.35 1.71 100 1500 86.83 3.65 1.32 83.83 3.76 1.52 100 2000 87.33 4.50 1.27 84.04 4.02 1.46 100 2500 87.69 4.93 1.30 84.41 4.85 1.32 100 3000 88.18 5.85 1.12 84.72 5.02 1.28 100 3500 88.26 6.54 1.13 84.16 5.81 1.21 100 4000 87.55 7.61 1.17 83.76 6.10 1.06 150 3000 87.55 6.02 1.15 83.61 6.21 1.21 200 3000 87.09 6.15 1.16 82.95 6.38 1.63 300 3000 85.92 6.64 1.15 81.52 6.62 1.18 400 3000 84.08 7.24 1.20 80.48 6.79 1.20 500 3000 82.29 7.42 1.02 79.51 7.04 1.11 下載: 導出CSV表 6 從源域到目標域的平均分類(lèi)精度(%)
Table 6 Average classification accuracy from source domain to target domain (%)
任務(wù)/方法 BLS SS-BLS TCA CDELM CD-CDBN DABLS CO1→CO2 82.25 83.75 88.61 81.66 84.67 88.12 CO2→CO1 80.63 81.17 86.33 80.19 80.74 84.72 平均值 81.44 82.46 87.47 80.93 82.70 86.42 下載: 導出CSV表 7 從源域到目標域的平均訓練時(shí)間(s)
Table 7 Average training time from source domain to target domain (s)
任務(wù)/方法 BLS SS-BLS TCA CDELM CD-CDBN DABLS CO1→CO2 1.38 3.22 19.98 5.87 125.33 5.35 CO2→CO1 0.85 2.95 14.67 5.48 136.78 5.33 平均值 1.12 3.09 17.32 5.68 131.05 5.34 下載: 導出CSV表 8 不同節點(diǎn)數下DABLS的實(shí)驗結果
Table 8 Experimental results of DABLS with different numbers of nodes
特征
節點(diǎn)增強
節點(diǎn)A→C W→C 精度(%) 時(shí)間(s) 標準差 精度(%) 時(shí)間(s) 標準差 500 50 43.63 8.81 0.75 34.69 6.01 0.35 500 100 43.73 8.86 0.53 35.24 6.24 0.91 500 150 43.82 8.92 0.77 35.53 6.50 0.65 500 200 43.92 9.01 0.62 35.61 6.78 0.71 500 300 43.98 9.18 0.85 35.93 6.93 0.92 500 400 44.02 9.53 0.87 36.27 7.21 0.77 500 500 44.29 9.77 0.44 36.50 7.43 0.70 500 600 43.50 9.98 0.61 36.52 7.72 0.93 500 800 43.36 10.52 0.59 36.21 8.01 0.64 500 1000 43.18 10.90 0.82 36.04 8.39 0.33 100 500 42.01 8.72 0.76 32.39 6.48 0.91 200 500 42.36 9.02 0.83 33.95 6.66 0.99 300 500 42.83 9.30 0.65 34.27 6.87 0.92 400 500 43.59 9.53 0.69 36.11 7.12 0.77 600 500 44.25 10.44 0.78 36.17 7.85 0.82 800 500 43.43 10.75 0.65 35.77 8.03 0.69 下載: 導出CSV表 9 從源域到目標域的平均分類(lèi)精度(%)
Table 9 Average classification accuracy from source domain to target domain (%)
任務(wù)/方法 BLS SS-BLS TCA CDELM CD-CDBN DABLS A→C 20.82 42.16 40.78 31.67 35.56 44.29 A→D 17.83 39.40 31.85 32.48 33.79 42.06 A→W 19.61 40.61 37.63 31.47 27.46 42.09 C→A 29.16 49.67 44.89 44.99 38.78 51.68 C→D 24.84 44.20 45.84 35.37 36.94 45.85 C→W 20.46 45.74 36.61 38.92 35.54 47.79 D→A 32.42 35.57 31.52 30.61 28.34 36.73 D→C 30.03 30.19 32.50 28.96 26.79 32.47 D→W 79.98 79.11 87.12 76.95 50.78 80.06 W→A 34.61 37.51 30.69 35.55 30.89 40.01 W→C 31.73 35.29 27.16 32.03 27.26 36.50 W→D 80.81 80.89 90.45 78.99 50.42 82.73 平均值 35.19 46.69 45.38 41.50 35.21 48.52 下載: 導出CSV表 10 從源域到目標域的平均訓練時(shí)間(s)
Table 10 Average training time from source domain to target domain (s)
任務(wù)/方法 BLS SS-BLS TCA CDELM CD-CDBN DABLS A→C 0.78 5.39 36.69 6.83 46.36 9.77 A→D 0.67 0.83 11.73 1.29 33.28 2.76 A→W 0.64 0.99 13.65 1.52 34.23 2.91 C→A 0.68 3.86 35.71 5.74 41.44 8.18 C→D 0.71 0.93 15.05 1.58 35.86 3.71 C→W 0.67 1.09 16.75 1.59 38.37 3.63 D→A 0.59 3.58 11.82 4.14 20.12 5.50 D→C 0.54 5.19 16.21 6.14 26.63 7.45 D→W 0.55 0.79 3.53 0.73 20.48 1.17 W→A 0.58 3.43 14.29 4.33 45.53 5.93 W→C 0.57 5.17 19.05 6.12 56.28 7.43 W→D 0.52 0.69 3.22 0.66 12.40 1.02 平均值 0.62 2.66 16.48 3.39 30.08 4.96 下載: 導出CSV表 11 不同節點(diǎn)數下DABLS的實(shí)驗結果
Table 11 Experimental results of DABLS with different numbers of nodes
特征
節點(diǎn)增強
節點(diǎn)V→I I→V 精度(%) 時(shí)間(s) 標準差 精度(%) 時(shí)間(s) 標準差 100 600 74.13 35.25 1.05 66.61 16.62 1.31 150 600 75.94 37.99 0.75 66.83 19.24 0.77 200 600 76.53 42.29 0.59 67.51 22.42 0.62 250 600 77.87 44.51 0.33 67.83 26.03 0.41 300 600 77.65 47.64 0.29 67.81 28.96 0.43 400 600 76.87 53.89 0.36 67.24 31.62 0.45 500 600 75.67 57.13 0.19 67.02 35.37 0.39 600 600 75.20 61.29 0.27 66.86 38.69 0.37 250 200 74.29 26.56 0.73 66.32 14.73 0.87 250 400 77.21 31.59 0.67 67.13 17.33 0.54 250 800 77.23 46.21 0.56 67.69 24.09 0.42 250 1000 76.83 52.68 0.65 67.52 27.55 0.34 250 1500 74.93 65.71 0.46 67.42 36.43 0.31 250 2000 73.86 83.61 0.36 67.33 43.53 0.33 250 2500 71.77 103.38 0.31 66.73 50.92 0.26 下載: 導出CSV表 12 從源域到目標域的平均分類(lèi)精度(%)
Table 12 Average classification accuracy from source domain to target domain (%)
任務(wù)/方法 BLS SS-BLS TCA CDELM CD-CDBN DABLS V→I 76.22 77.03 73.79 76.82 76.02 77.87 I→V 66.32 67.13 64.34 66.85 67.19 67.83 平均值 71.27 72.08 69.06 71.83 71.60 72.85 下載: 導出CSV表 13 從源域到目標域的平均訓練時(shí)間(s)
Table 13 Average training time from source domain to target domain (s)
任務(wù)/方法 BLS SS-BLS TCA CDELM CD-CDBN DABLS V→I 6.37 37.69 52.15 55.04 1039.03 44.51 I→V 3.62 17.32 30.42 33.39 823.35 26.03 平均值 4.96 27.50 41.28 44.25 931.19 35.27 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Salakhutdinov R, Hinton G. An efficient learning procedure for deep boltzmann machine. Neural Computation, 2014, 24(8): 1967?2006 [2] 林景棟, 吳欣怡, 柴毅, 尹宏鵬. 卷積神經(jīng)網(wǎng)絡(luò )結構優(yōu)化綜述. 自動(dòng)化學(xué)報, 2020, 46(1): 24?37Lin Jing-Dong, Wu Xin-Yi, Chai Yi, Yin Hong-Peng. Structure optimization of convolutional neural networks: A survey. Acta Automatica Sinica, 2020, 46(1): 24?37 [3] Hinton G E, Osinderos T Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527?1554 doi: 10.1162/neco.2006.18.7.1527 [4] 劉建偉, 謝浩杰, 羅雄麟. 生成對抗網(wǎng)絡(luò )在各領(lǐng)域應用研究進(jìn)展. 自動(dòng)化學(xué)報, 2020, 46(12): 2500?2536Liu Jian-Wei, Xie Hao-Jie, Luo Xiong-Lin. Research progress on application of generative adversarial networks in various fields. Acta Automatica Sinica, 2020, 46(12): 2500?2536 [5] Feng L, Chen Z, Jie W. Video image target monitoring based on RNN-LSTM. Multimedia Tools Applications, 2018, 78(2): 1?18 [6] Chen C L P, Liu Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10?24 doi: 10.1109/TNNLS.2017.2716952 [7] Chen C L P, Liu Z, Feng S. Universal approximation capability of broad learning system and its structural variations. IEEE Transactions on Neural Networksand Learning Systems, 2019, 30(4): 1191?1204 doi: 10.1109/TNNLS.2018.2866622 [8] Jin J W, Chen C L P. Regularized robust broad learning system for uncertain data modeling. Neurocomputing, 2018, 322(1): 58?69 [9] 楊剛, 陳鵬, 戴麗珍, 楊輝. 一種基于池計算的寬度學(xué)習系統. 控制與決策, 2021, 36(9): 2203?2210Yang Gang, Chen Peng, Dai Li-Zhen, Yang Hui. A broad learning system based on reservoir computing. Control and Decision, 2021, 36(9): 2203?2210 [10] 鄒偉東, 夏元清. 基于壓縮因子的寬度學(xué)習系統的虛擬機性能預測. 自動(dòng)化學(xué)報, 2022, 48(3): 724?734Zou Wei-Dong, Xia Yuan-Qing. Virtual machine performance prediction using broad learning system based on compression factor. Acta Automatica Sinica, 2022, 48(3): 724?734 [11] Kong Y, Wang X, Cheng Y, Chen C. Hyperspectral imagery classification based on semi-supervised broad learning system. Remote Sensing, 2018, 10(5): Article No. 685 doi: 10.3390/rs10050685 [12] 鄭云飛, 陳霸東. 基于最小p-范數的寬度學(xué)習系統. 模式識別與人工智能, 2019, 32(1): 51?57Zheng Yun-Fei, Chen Ba-Dong. Least p-norm based broad learning system. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 51?57 [13] Lin J, Liu Z, Chen C L P, Zhang Y. Quaternion broad learning system: A novel multi-dimensional filter for estimation and elimination tremor in teleoperation. Neurocomputing, 2020, 380: 78?86 doi: 10.1016/j.neucom.2019.10.059 [14] Han M, Feng S B, Chen C L P, Xu M L, Qiu T. Structured manifold broad learning system: A manifold perspective for large-scale chaotic time series analysis and prediction. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(9): 1809?1821 doi: 10.1109/TKDE.2018.2866149 [15] Fan J H, Wang X, Wang X X, Zhao J H, Liu X X. Incremental wishart broad learning system for fast polsar image classification. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1854?1858 doi: 10.1109/LGRS.2019.2913999 [16] Feng S, Chen C L P. Fuzzy broad learning system: A novel neuro-fuzzy model for regression and classification. IEEE Transactions on Cybernetics, 2020, 50(2): 414?424 doi: 10.1109/TCYB.2018.2857815 [17] Xu M L, Han M, Chen C L P, Qiu T. Recurrent broad learning systems for time series prediction. IEEE Transactions on Cybernetics, 2020, 50(4): 1405?1417 doi: 10.1109/TCYB.2018.2863020 [18] Chu F, Liang T, Chen C L P, Wang X S, Ma X P. Weighted broad learning system and its application in nonlinear industrial process modeling. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 3017?3031 doi: 10.1109/TNNLS.2019.2935033 [19] Liu Y, Wang Y F, Chen L, Zhao J, Wang W, Liu Q L. Incremental Bayesian broad learning system and its industrial application. Artificial Intelligence Review, 2020, 54: 3517?3537 [20] Shi Z H, Chen X M, Zhao C M, He H, Stuphorn V, Wu D R. Multi-view broad learning system for primate oculomotor decision decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(9): 1908?1920 doi: 10.1109/TNSRE.2020.3003342 [21] Zhao H M, Zheng J J, Deng W, Song Y J. Semi-supervised broad learning system based on manifold regularization and broad network. IEEE Transactions on Circuits and Systems—— I: Regular Papers, 2020, 67(3): 983?994 doi: 10.1109/TCSI.2019.2959886 [22] Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 2021, 22(2): 199?210 [23] Li S, Song S J, Huang G, Wu C. Cross-domain extreme learning machines for domain adaptation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(6): 1194?1207 [24] Huang G B. Learning hierarchical representations for face verification with convolutional deep belief networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, USA: IEEE, 2012. 2518−2525